BENZEN &TURUNANNYA
Benzena | |
---|---|
Identifikasi | |
Nomor CAS | [71-43-2] |
Nomor RTECS | CY1400000 |
SMILES | c1ccccc1 C1=CC=CC=C1 |
Sifat | |
Rumus molekul | C6H6 |
Massa molar | 78,1121 g/mol |
Penampilan | Cairan tak berwarna |
Densitas | 0,8786 g/mL, zat cair |
Titik leleh | 5,5 °C (278,6 K) |
Titik didih | 80,1 °C (353,2 K) |
Kelarutan dalam air | 0,8 g/L (25 °C) |
Viskositas | 0,652 cP pada 20 °C |
Momen dipol | 0 D |
Bahaya | |
Klasifikasi EU | (F) Carc. Cat. 1 Muta. Cat. 2 Toxic (T) |
NFPA 704 | |
Frasa-R | R45, R46, R11, R36/38,R48/23/24/25, R65 |
Frasa-S | S53, S45 |
Titik nyala | −11 °C |
Senyawa terkait | |
Senyawa terkait | toluena borazina |
Kecuali dinyatakan sebaliknya, data di atas berlaku pada temperatur dan tekanan standar (25°C, 100 kPa) Sangkalan dan referen |
STRUKTUR BENZENA
|
||||
|
||||
atau
|
||||
Struktur Kekule Benzena
|
Benzena termasuk senyawa aromatik dan memiliki rumus molekul C6H6. Rumus molekul benzena memperlihatkan sifat ketakjenuhan dengan adanya ikatan rangkap. Tetapi ketika dilakukan uji bromin benzena tidak memperlihatkan sifat ketakjenuhan karena benzena tidak melunturkan warna dari air bromin. Mengapa demikian?
Berdasarkan hasil analisis, ikatan rangkap dua karbon-karbon pada benzena tidak terlokalisasi pada karbon tertentu melainkan dapat berpindah-pindah. Gejala ini disebut resonansi. Adanya resonansi pada benzena ini menyebabkan ikatan pada benzena menjadi stabil, sehingga ikatan rangkapnya tidak dapat diadisi oleh air bromin.
RESONANSI
Struktur Resonansi Benzena:
Resonansi terjadi karena adanya delokalisasi elektron dari ikatan rangkap ke ikatan tunggal. Delokalisasi elektron yang terjadi pada benzena pada struktur resonansi adalah sebagai berikut:
Hal yang harus diperhatikan adalah, bahwa lambang resonasi bukan struktur nyata dari suatu senyawa, tetapi merupakan struktur khayalan. Sedangkan struktur nyatanya merupakan gabungan dari semua struktur resonansinya. Hal ini pun berlaku dalam struktur resonansi benzena, sehingga benzena lebih sering digambarkan sebagai berikut:
Teori resonansi dapat menerangkan mengapa benzena sukar diadisi. Sebab, ikatan rangkap dua karbon-karbon dalam benzena terdelokalisasi dan membentuk semacam cincin yang kokoh terhadap serangan kimia, sehingga tidak mudah diganggu. Oleh karena itulah reaksi yang umum pada benzena adalah reaksi substitusi terhadap atom H tanpa mengganggu cincin karbonnya.
|
|
|
Gambar 3 dimensi Struktur Benzena |
Gambar Molimod Struktur Benzena |
Sifat Fisik:
- Zat cair tidak berwarna
- Memiliki bau yang khas
- Mudah menguap
- Tidak larut dalam pelarut polar seperti air air,
tetapi larut dalam pelarut yang kurang polar atau nonpolar,
seperti eter dan tetraklorometana - Titik Leleh : 5,5 derajat Celsius
- Titik didih : 80,1derajat Celsius
- Densitas : 0,88
- Bersifat kasinogenik (racun)
- Merupakan senyawa nonpolar
- Tidak begitu reaktif, tapi mudah terbakar dengan menghasilkan banyak jelaga
- Lebih mudah mengalami reaksi substitusi dari pada adisi.
(untuk mengetahui beberapa reaksi subtitusi pada benzena klik disini>>>)
Dalam sistem penamaan IUPAC, cincin benzena dianggap sebagai induk, sama seperti rantai terpanjang dalam alkana. Gugus-gugus fungsi lain yang terikat pada benzena dianggap sebagai cabang.
a. Tata Nama Senyawa Turunan Benzena dengan satu substituen yang terikat pada cincin Benzena
Perhatikan beberapa contoh berikut:
Etil benzena |
bromobenzena |
nitrobenzena |
||
Benzena yang kehilangan satu atom H disebut fenil (C6H5-) dengan struktur sebagai berikut:
fenil |
Sehingga klorobenzena dapat juga disebut fenilklorida dan bromobenzena dapai disebut fenilbromina
|
klorobenzena = fenilklorida |
Benzil |
Benzilamina |
Jika terdapat dua jenis substituen, maka posisi substituen dapat dinyatakan dengan awalan o (orto), m (meta), p (para) atau dengan menggunakan angka.
orto |
meta |
para |
|||
o-dibromobenzena |
m-kloroanilina |
p-nitrofenol
|
|||
Arah tanda panah menunjukkan substituen yang semakin prioritas, maka penomorannya dengan nomor yang semakin kecil |
Sedangkan jika terdapat tiga substituen atau lebih pada cincin benzena, maka sistem o, m, p tidak dapat diterapkan lagi dan hanya dapat dinyatakan dengan angka. Perhatikan contoh berikut:
1,2,4-trinitro benzena |
2,4,6-trinitotoluena |
Catatan Penting!
Jika sebuah cincin benzena terikat pada suatu rantai alkana yang bergugus fungsi atau rantai alkana yang terdiri dari 7 atom karbon atau lebih, maka cincin benzena dianggap sebagai substituen bukan lagi sebagai induk.
Perhatikan contoh berikut:
2-fenil-1-etanol |
2-feniloktana |
SENYAWA TURUNAN BENZENA
Kemudahan benzena mengalami reaksi substitusi elektrofilik menyebabkan benzena memiliki banyak senyawa turunan. Semua senyawa karbon yang mengandung cincin benzena digolongkan sebagai turunan benzena. Berikut ini beberapa turunan benzena yang umum:
Struktur |
Nama |
Struktur |
Nama |
Toluena |
Fenol |
||
p-xilena |
Benzaldehida |
||
Stirena |
Asam Benzoat |
||
Anilina |
Benzil alkohol |
KEGUNAAN BENZENA DAN TURUNANNYA
Kegunaan benzena yang terpenting adalah sebagai pelarut dan sebagai bahan baku pembuatan senyawa-senyawa aromatik lainnya yang merupakan senyawa turunan benzena. Masing-masing dari senyawa turunan benzena tersebut memiliki kegunaan yang beragam bagi kehidupan manusia. Berikut ini beberapa senyawa turunan Benzena dan kegunaannya:
1. Toluena
Toluena digunakan sebagai pelarut dan sebagai bahan dasar untuk membuat TNT (trinitotoluena), senyawa yang digunakan sebagai bahan peledak (dinamit).
2. Stirena
Stirena digunakan sebagai bahan dasar pembuatan polimer sintetik polistirena melalui proses polimerisasi. Polistirena banyak digunakan untuk membuat insolator listrik, boneka, sol sepatu serta piring dan cangkir.
Struktur Polistirena |
Anilina merupakan bahan dasar untuk pembuatan zat-zat warna diazo. Anilina dapat diubah menjadi garam diazonium dengan bantuan asam nitrit dan asam klorida.
Garam diazonium selanjutnya diubah menjadi berbagai macam zat warna. Salah satu contohnya adalah Red No.2 yang memiliki struktur sebagai berikut:
Struktur Zat Pewarna Red No.2 |
4. Benzaldehida
Benzaldehida digunakan sebagai zat pengawet serta bahan baku pembuatan parfum karena memiliki bau yang khas. Benzaldehida dapat berkondensasi dengan asetaldehida (etanal), untuk menghasilkan sinamaldehida (minyak kayu manis).
5. Fenol
Dalam kehidupan sehari-hari fenol dikenal sebagai karbol atau lisol yang berfungsi sebagai zat disenfektan.
6. Asam Benzoat dan Turunannya
Terdapat beberapa turunan dari asam benzoat yang tanpa kita sadari sering kita gunakan, diantaranya adalah:
• Asam asetil salisilat atau lebih dikenal dengan sebutan aspirin atau asetosal yang biasa digunakan sebagai obat penghilang rasa sakit (analgesik) dan penurun panas (antipiretik). Oleh karena itu aspirin juga digunakan sebagai obat sakit kepala, sakit gigi, demam dan sakit jantung. Penggunaan dalam jangka panjang dapat menyebabkan iritasi lapisan mukosa pada lambung sehingga menimbulkan sakit maag, gangguan ginjal, alergi, dan asma.
Asam asetil salisilat |
Natrium Benzoat |
Metil Salisilat |
Asam Tereftalat |
Parasetamol |
Diagram Kegunaan Benzena dan Turunannya:
DAMPAK BENZENA
Telah disebutkan bahwa benzena memiliki sifat racun atau kasinogenik, yaitu zat yang dapat membentuk kanker dalam tubuh manusia jika kadarnya dalam tubuh manusia berlebih. Beberapa penelitian menunjukan bahwa benzena merupakan salah satu penyebab leukemia, penyakit kanker darah yang telah banyak menyebabkan kematian.
Dampak kesehatan akibat paparan Benzena berupa depresi pada sistim saraf pusat hingga kematian. Paparan Benzena antara 50–150 ppm dapat menyebabkan sakit kepala, kelesuan, dan perasaan mengantuk. Konsentrasi Benzena yang lebih tinggi dapat menyebabkan efek yang lebih parah, termasuk vertigo dan kehilangan kesadaran. Paparan sebesar 20.000 ppm selama 5 – 10 menit bersifat fatal dan paparan sebesar 7.500 ppm dapat menyebabkan keracunan jika terhirup selama 0,5 – 1 jam. Dampak yang ringan dapat berupa euforia, sakit kepala, muntah, gaya berjalan terhuyung-huyung, dan pingsan.
No comments:
Post a Comment