Sunday, May 20, 2012

INTERAKSI MOLEKUL

1. Teori Domain Elektron (TDE)
  • Bentuk molekul tergantung pada susunan ruang pasangan elektron ikatan (PEI
    dan pasangan elektron bebas (PEB) atom pusat dalam molekul. Dapat dijelaskan
    dengan teori tolakan pasangan elektron kulit valensi atau teori VSEPR (Valence
    Shell Electron Pair Repultion)
  • Molekul kovalen terdapat pasangan-pasangan elektron baik PEI maupun PEB.
    Karena pasangan-pasangan elektron mempunyai muatan sejenis, maka tolak-
    menolak antarpasangan elektron. Tolakan (PEB – PEB) > tolakan (PEB – PEI) >
    tolakan (PEI – PEI)
  • Adanya gaya tolak-menolak menyebabkan atom-atom yang berikatan
    membentuk struktur ruang yang tertentu dari suatu molekul dengan demikian
    bentuk molekul dipengaruhi oleh banyaknya PEI maupun PEB yang dimiliki pada
    atom pusat.
  • Bentuk molekul ditentukan oleh pasangan elektron ikatannya
    Contoh molekul CH4 memiliki 4 PEI




2. Rumus Tipe Molekul
1)          Atom pusat dilambangkan dengan A
2)          Domain elektron ikatan dilambangkan dengan X
3)          Domain elektron bebas dinyatakan dengan E
Tabel Bentuk Molekul Berdasarkan PEI dan PEB
Jumlah Pasangan Elektron Ikatan (X) Jumlah Pasangan Elektron Bebas (E) Rumus (AXnEm) Bentuk Molekul Contoh
2 0 AX2 Linear CO2
3 0 AX3 Trigonal planar BCl3
2 1 AX2E Bengkok SO2
4 0 AX4 Tetrahedron CH4
3 1 AX3E Piramida trigonal NH3
2 2 AX2E2 Planar bentuk V H2O
5 0 AX5 Bipiramida trigonal PCl5
4 1 AX4E Bipiramida trigonal SF4
3 2 AX3E2 Planar bentuk T IF3
2 3 AX2E3 Linear XeF2
6 0 AX6 Oktahedron SF6
5 1 AX5E Piramida sisiempat IF5
4 2 AX4E2 Sisiempat datar XeF4
Dengan menggunakan teori VSEPR maka kita dapat meramalkan bentuk geometri suatu molekul. Dalam artikel ini maka akan di contohkan menentukan bentuk geometri molekul XeF2, XeF4, dan XeF6.
Diantara molekul-molekul tersebut ada yang memiliki pasangan elektron bebas dan ada yang tidak, jadi molekul-molekul tersebut adalah contoh yang bagus untuk lebih memahami teori VSEPR.
Pertama kita harus mementukan struktur lewis masing-masing molekul. Xe memiliki jumlah elektron valensi 8 sedangkan F elektron valensinya adalah 7. (lihat gambar dibawah)



Struktur Lewis XeF2 seperti gambar sebelah kiri, dua elektron Xe masing-masing diapakai untuk berikatan secara kovalen dengan 2 atom F sehingga meninggalkan 3 pasangan elektron bebas pada atom pusat Xe. Hal yang sama terjadi pada molekul XeF4 dimana 4 elektron Xe dipakai untuk berikatan dengan 4 elektron dari 4 atom F, sehingga meninggalkan 2 pasangan elektron bebas pada atom pusat Xe.


Lihat gambar disamping –> XeF2 memiliki 2 pasangan elekktron terikat (PET) dan 3 pasangan elektron bebas (PEB) jadi total ada 5 pasangan elektron yang terdapat pada XeF2, hal ini menandakan bahwa geometri molekul atau kerangka dasar molekul XeF2 adalah trigonal bipiramid. Karena terdapat 3 PEB maka PEB ini masing masing akan menempati posisi ekuatorial pada kerangka trigonal bipiramid, sedangkan PET akan menempati posisi aksial yaitu pada bagian atas dan bawah.
Posisi inilah posisi yang stabil apabila terdapat atom dengan 2 PET dan 3 PEB sehingga menghasilkan bentuk molekul linear. Jadi bentul molekul XeF2 adalah linier. (lihat gambar disebelah ini).

Pada gambar disamping –> strutur lewis XeF4 memiliki 4 pasangan elekktron terikat (PET) dan 2 pasangan elektron bebas (PEB) jadi total ada 6 pasangan elektron yang terdapat pada XeF4, hal ini menandakan bahwa geometri molekul atau kerangka dasar molekul XeF4 adalah oktahedral. Karena terdapat 2 PEB maka PEB ini masing masing akan menempati posisi aksial pada kerangka oktahedral, sedangkan PET akan menempati posisi ekuatorial. Posisi inilah posisi yang stabil apabila terdapat atom dengan 4 PET dan 2 PEB sehingga menghasilkan bentuk molekul yang disebut segiempat planar. Jadi bentul molekul XeF2 adalah segiempat planar. Bentuk molekul akan sama dengan susunan ruang elektron yang ada pada atom pusat jika tidak pasangan elektron bebas.
Perhatikan Gambar Bentuk Molekul di bawah ini !
X = atom pusat
E = pasangan elektron bebas

0.000000 0.000000
Disimpan dalam Kimia Kelas XI, Materi Kimia

IKATAN HIDROGEN DAN IKATAN VAN DER WAALS

Agustus 13, 2010 oleh 6 Komentar
Gaya antarmolekul adalah gaya elektromagnetik yang terjadi antara molekul atau antara bagian yang terpisah jauh dari suatu makromolekul. Gaya-gaya ini dapat berupa kohesi antara molekul serupa, seperti contohnya pada tegangan permukaan, atau adhesi antara molekul tak serupa, contohnya pada kapilaritas. Gaya-gaya ini, dimulai dari yang paling kuat, terdiri dari: interaksi ionik, ikatan hidrogen, interaksi dwikutub (dipole), dan gaya Van der Waals.
a. Ikatan Hidrogen

Dalam kimia, ikatan hidrogen adalah sejenis gaya tarik antarmolekul yang terjadi antara dua muatan listrik parsial dengan polaritas yang berlawanan. Walaupun lebih kuat dari kebanyakan gaya antarmolekul, ikatan hidrogen jauh lebih lemah dari ikatan kovalen dan ikatan ion. Dalam makromolekul seperti protein dan asam nukleat, ikatan ini dapat terjadi antara dua bagian dari molekul yang sama. dan berperan sebagai penentu bentuk molekul keseluruhan yang penting.
Ikatan hidrogen terjadi ketika sebuah molekul memiliki atom N, O, atau F yang mempunyai pasangan elektron bebas (lone pair electron). Hidrogen dari molekul lain akan berinteraksi dengan pasangan elektron bebas ini membentuk suatu ikatan hidrogen dengan besar ikatan bervariasi mulai dari yang lemah (1-2 kJ mol-1) hingga tinggi (>155 kJ mol-1).
Kekuatan ikatan hidrogen ini dipengaruhi oleh perbedaan elektronegativitas antara atom-atom dalam molekul tersebut. Semakin besar perbedaannya, semakin besar ikatan hidrogen yang terbentuk.
Ikatan hidrogen mempengaruhi titik didih suatu senyawa. Semakin besar ikatan hidrogennya, semakin tinggi titik didihnya. Namun, khusus pada air (H2O), terjadi dua ikatan hidrogen pada tiap molekulnya. Akibatnya jumlah total ikatan hidrogennya lebih besar daripada asam florida (HF) yang seharusnya memiliki ikatan hidrogen terbesar (karena paling tinggi perbedaan elektronegativitasnya) sehingga titik didih air lebih tinggi daripada asam florida.
Silakan “Klik” kata dibawah ini untuk Link,…

“Kuat”



“Lemah”
Ikatan hidrogen


lainnya

b. Ikatan Van der Waals
Gaya van der Waals dalam ilmu kimia merujuk pada salah satu jenis gaya antara molekul. Istilah ini pada awalnya merujuk pada semua jenis gaya antar molekul, dan hingga saat ini masih kadang digunakan dalam pengertian tersebut, tetapi saat ini lebih umum merujuk pada gaya-gaya yang timbul dari polarisasi molekul menjadi dipol.
Hal ini mencakup gaya yang timbul dari dipol tetap (gaya Keesom), dipol rotasi atau bebas (gaya Debye) serta pergeseran distribusi awan elektron (gaya London).
Nama gaya ini diambil dari nama kimiawan Belanda Johannes van der Waals, yang pertama kali mencatat jenis gaya ini. Potensial Lennard-Jones sering digunakan sebagai model hampiran untuk gaya van der Waals sebagai fungsi dari waktu.
Interaksi van der Waals teramati pada gas mulia, yang amat stabil dan cenderung tak berinteraksi. Hal ini menjelaskan sulitnya gas mulia untuk mengembun. Tetapi, makin besar ukuran atom gas mulia (makin banyak elektronnya) makin mudah gas tersebut berubah menjadi cairan.
Silakan di “Klik” langsung tulisan dibawah ini, untuk Link,…ke wikipedia…

“Kuat”



“Lemah”


lainnya
Nama gaya ini diambil dari nama kimiawan Belanda JOHANNES VAN DER WAALS, yang pertama kali mencatat jenis gaya ini. Potensial LENNARD-JONES sering digunakan sebagai model hampiran untuk gaya van der Waals sebagai fungsi dari waktu.
Interaksi van der Waals teramati pada gas mulia, yang amat stabil dan cenderung tak berinteraksi. Hal ini menjelaskan sulitnya gas mulia untuk mengembun. Tetapi, makin besar ukuran atom gas mulia (makin banyak elektronnya) makin mudah gas tersebut berubah menjadi cairan.
Gaya van der Waals dalam ilmu kimia merujuk pada jenis tertentu gaya antar molekul. Istilah ini pada awalnya merujuk pada semua jenis gaya antar molekul, dan hingga saat ini masih kadang digunakan dalam pengertian tersebut, tetapi saat ini lebih umum merujuk pada gaya-gaya yang timbul dari polarisasi molekul menjadi dipol.
Hal ini mencakup gaya yang timbul dari dipol tetap (gaya Keesom), dipol rotasi atau bebas (gaya Debye) serta pergeseran distribusi awan elektron (gaya London).
Gaya van der waals : gaya tarik di antara atom atau molekul, gaya ini jauh lebih lemah dibandingkan gaya yang timbul karena ikatan valensi dan besarnya ialah 10-7 kali jarak antara atom-atom atau molekul-molekul. Gaya ini menyebabkan sifat tak ideal pada gas dan menimbulkan energi kisi pada kristal molekular. Ada tiga hal yang menyebabkan gaya ini :
  1. Interaksi dwikutub-dwikutub, yaitu tarikan elektrostatistik di antara dua molekul dengan moment dwikutub permanen.
  2. Interaksi dwikutub imbasan, artinya dwikutub timbul karena adanya polarisasi oleh molekul tetangga.
  3. Gaya dispersi yang timbul karena dwikutub kecil dan bersifat sekejap dalam atom.
Asal mula gaya dispersi van der Waals

Dipol-dipol yang berubah-ubah sementara

Dayatarik yang ada di alam bersifat elektrik. Pada molekul yang simetris seperti hidrogen, bagaimanapun, tidak terlihat mengalami distorsi secara elektrik untuk menghasilkan bagian positif atau bagian negatif. Akan tetapi hanya dalam bentuk rata-rata.
Diagram dalam bentuk lonjong (the lozenge-shaped) menggambarkan molekul kecil yang simetris – H2, boleh jadi, atau Br2. Tanda arsir menunjukkan tidak adanya distorsi secara elektrik.
Akan tetapi elektron terus bergerak, serta merta dan pada suatu waktu elektron tersebut mungkin akan ditemukan di bagian ujung molekul, membentuk ujung -. Pada ujung yang lain sementara akan kekurangan elaktron dan menjadi +.

Catatan: (dibaca “delta”) berarti “agak” (slightly) – karena itu + berarti “agak positif”.

Kondisi yang terakhir elektron dapat bergerak ke ujung yang lain, membalikkan polaritas molekul.
“Selubung lingkarang” yang konstan dari elektron pada molekul menyebabkan fluktuasi dipol yang cepat pada molekul yang paling simetris. Hal ini terjadi pada molekul monoatomik – molekul gas mulia, seperti helium, yang terdiri dari atom tunggal.
Jika kedua elektron helium berada pada salah satu sisi secara bersamaan, inti tidak terlindungi oleh elektron sebagaimana mestinya untuk saat itu.
Dipol-dipol sementara yang bagaimana yang membemberikan kenaikan dayaarik antarmolekul

Bayangkan sebuah molekul yang memiliki polaritas sementara yang didekati oleh salah satu yang terjadi menjadi termasuk non-polar hanya saat itu saja. (kejadian yang tidak disukai, tetapi hal ini menjadikan diagram lebih mudah digambarkan! Pada kenyataannya, satu molekul lwbih menyukai memiliki polaritas yang lebih besar dibandingkan yang lain pada saat seperti itu – dan karena itu akan menjadi yang paling dominan).
Seperti molekul yang ditemukan pada bagian kanan, elektronnya akan cenderung untuk ditarik oleh ujung yang agak positif pada bagian sebelah kiri.
Hal ini menghasilkan dipol terinduksi pada penerimaan molekul, yang berorientasi pada satu cara yang mana ujung + ditarik ke arah ujung – yang lain.
Pada kondisi yang terakhir elektron pada bagian kiri molekul dapat bergerak ke ujung yg lain. Pada saat terjadi hal ini, meraka akan menolak elektron pada bagian kanan yang satunya.
Polaritas kedua molekul adalah berkebalikan, tetapi kamu masih memiliki yang + tertarik -. Selama molekul saling menutup satu sama lain polaritas akan terus berfluktuasi pada kondisi yang selaras karena itu dayatarik akan selalu terpelihara.
Tidak ada alasan kenapa hal ini dibatasi pada dua molekul. Selama molekul saling mendekat pergerakan elektron yang selaras dapat terjadi pada molekul yang berjumlah sangat banyak.
Diagram ini menunjukkan bagaimana cacat secara keseluruhan dari molekul yang berikatan secara bersamaan pada suatu padatan dengan menggunakan gaya van der Waals. Pada kondisi yang terakhir, tentunya, kamu akan menggambarkan susunan yang sedikit berbeda selama meraka terus berubah – tetapi tetap selaras.
pakah dayatarik antarmolekul itu?

Ikatan antarmolekul versus ikatan intramolekul

Dayatarik antarmolekul adalah dayatarik yang terjadi antara suatu molekul dan molekul tetangganya. Gaya tarik yang mengikat molekul secara tersendiri (sebagai contoh, ikatan kovalen) dikenal dengan dayatarik intramolekul. Dua kata tersebut membingungkan yang mana untuk lebih amannya membuang salah satu diantaranya dan tidak digunakan lagi. Istilah “intramolekul” tidak akan digunakan lagi pada bagian ini.
Semua molekul mengalami dayatarik antarmolekul, meskipun pada beberapa kasus dayatarik yang terjadi sangatlah lemah. Pada gas seperti hidrogen, H2. Jika kamu memperlambat gerak molekul melalui pendinginan, dayatarik cukup besar bagi molekul untuk tetap bersama sampai pada akhirnya membentuk cairan dan kemudian padatan.
Pada kasus hidrogen dayatarik sangat lemah yang mana molekul membutuhkan pendinginan sampai 21 K (-252°C) sebelum dayatarik cukup kuat untuk mengkondensasi hidrogen menjadi cairan. Dayatarik antarmolekul yang dimiliki oleh helium lebih lemah – molekul tidak ingin tetap bersama untuk membentuk cairan sampai temperatur menurun sampai 4 K (-269°C).
Gaya van der Waals: gaya dispersion

Gaya dispersi (salah satu tipe dari gaya van der Waals adalah yang kita setujui pada halaman ini) yang juga dikenal dengan “gaya London” (dinamakan demikian setelah Fritz London mengusulkan untuk pertama kalinya).
Asal mula gaya dispersi van der Waals

Dipol-dipol yang berubah-ubah sementara

Dayatarik yang ada di alam bersifat elektrik. Pada molekul yang simetris seperti hidrogen, bagaimanapun, tidak terlihat mengalami distorsi secara elektrik untuk menghasilkan bagian positif atau bagian negatif. Akan tetapi hanya dalam bentuk rata-rata.

Diagram dalam bentuk lonjong (the lozenge-shaped) menggambarkan molekul kecil yang simetris – H2, boleh jadi, atau Br2. Tanda arsir menunjukkan tidak adanya distorsi secara elektrik.
Akan tetapi elektron terus bergerak, serta merta dan pada suatu waktu elektron tersebut mungkin akan ditemukan di bagian ujung molekul, membentuk ujung -. Pada ujung yang lain sementara akan kekurangan elaktron dan menjadi +.

Catatan: (dibaca “delta”) berarti “agak” (slightly) – karena itu + berarti “agak positif”.


Kondisi yang terakhir elektron dapat bergerak ke ujung yang lain, membalikkan polaritas molekul.

“Selubung lingkarang” yang konstan dari elektron pada molekul menyebabkan fluktuasi dipol yang cepat pada molekul yang paling simetris. Hal ini terjadi pada molekul monoatomik – molekul gas mulia, seperti helium, yang terdiri dari atom tunggal.
Jika kedua elektron helium berada pada salah satu sisi secara bersamaan, inti tidak terlindungi oleh elektron sebagaimana mestinya untuk saat itu.

Dipol-dipol sementara yang bagaimana yang membemberikan kenaikan dayaarik antarmolekul

Bayangkan sebuah molekul yang memiliki polaritas sementara yang didekati oleh salah satu yang terjadi menjadi termasuk non-polar hanya saat itu saja. (kejadian yang tidak disukai, tetapi hal ini menjadikan diagram lebih mudah digambarkan! Pada kenyataannya, satu molekul lwbih menyukai memiliki polaritas yang lebih besar dibandingkan yang lain pada saat seperti itu – dan karena itu akan menjadi yang paling dominan).

Seperti molekul yang ditemukan pada bagian kanan, elektronnya akan cenderung untuk ditarik oleh ujung yang agak positif pada bagian sebelah kiri.
Hal ini menghasilkan dipol terinduksi pada penerimaan molekul, yang berorientasi pada satu cara yang mana ujung + ditarik ke arah ujung – yang lain.

Pada kondisi yang terakhir elektron pada bagian kiri molekul dapat bergerak ke ujung yg lain. Pada saat terjadi hal ini, meraka akan menolak elektron pada bagian kanan yang satunya.

Polaritas kedua molekul adalah berkebalikan, tetapi kamu masih memiliki yang + tertarik -. Selama molekul saling menutup satu sama lain polaritas akan terus berfluktuasi pada kondisi yang selaras karena itu dayatarik akan selalu terpelihara.
Tidak ada alasan kenapa hal ini dibatasi pada dua molekul. Selama molekul saling mendekat pergerakan elektron yang selaras dapat terjadi pada molekul yang berjumlah sangat banyak.

Diagram ini menunjukkan bagaimana cacat secara keseluruhan dari molekul yang berikatan secara bersamaan pada suatu padatan dengan menggunakan gaya van der Waals. Pada kondisi yang terakhir, tentunya, kamu akan menggambarkan susunan yang sedikit berbeda selama meraka terus berubah – tetapi tetap selaras.
Kekuatan gaya dispersi

Gaya dispersi antara molekul-molekul adalah lebih lemah dibandingkan dengan ikatan kovalen diantara molekul. Hal ini tidak memungkinkan untuk memberikan harga yang eksak, karena ukuran dayatarik bervariasi sekali dengan ukuran dan bentuk molekul.
Seberapa jauh ukuran molekul memperngaruhi kekuatan ikatan daya dispersi

Titik didih gas mulia adalah

helium -269°C
neon -246°C
argon -186°C
kripton -152°C
xenon -108°C
radon -62°C
Semua unsur tersebut berada pada molekul monoatomik.
Alasan yang mendasari bahwa titik didih meningkat sejalan dengan menurunnya posisi unsur pada golongan adalah kenaikan jumlah elektron, dan juga tentunya jari-jari atom. Lebih banyak elektron yang kamu miliki, dan lebih menjauh sejauh mungkin, yang paling besar memungkikan dipol sementara terbesar dan karena itu gaya dispersi paling besar.

Karena dipol sementara lebih besar, molekul xenon lebih melekat (stickier) dibandingkan dengan molekul neon. Molekul neon akan berpisah satu sama lain pada temperatur yang lebih rendah dibandingkan molekul xenon – karena itu neon memiliki titik didih yang lebih rendah.
Hal ini adalah suatu alasan (semua yang lainnya sebanding) molekul yang lebih besar memiliki lebih banyak elektron dan lebih menjauh dari dipol sementara yang dapat dihasilkan – dan karena itu molekul yang lebih besar lebih melekat.
Seberapa jauh bentuk molekul mempengaruhi kekuatan gaya dispersi

Ukuran molekul juga begitu. Molekul yang panjang kurus dapat menghasilkan dipol sementara yang lebih besar berdasarkan pada pergerakan elektronnya dibandingkan molekul pendek gemuk yang mengandung jumlah elektron yang sama.
Molekul yang panjang kurus juga dapat lebih dekat satu sama lain – dayatarik meraka lebih efektif jika molekul-molekulnya benar-benar tertutup.
Sebagai contoh, molekul hidrokarbon butana dan 2-metilpropan keduanya memiliki rumus molekul C4H10, tetapi atom-atom disusun berbeda. Pada butana atom karbon disusun pada rantai tunggal, tetapi 2-metilpropan memiliki rantai yang lebih pendek dengan sebuah cabang.

Butana memiliki titik didih yang lebih tinggi karena gaya dispersinya lebih besar. Molekul yang lebih panjang (dan juga menghasilkan dipol sementara yang lebih besar) dapat lebih berdekatan dibandingkan molekul yang lebih pendek dan lebih gemuk 2-metilpropan.
Gaya van der Waals: interaksi dipol-dipol
Molekul seperti HCl memiliki dipol permanen karena klor lebih elektronegatif dibandingkan hidrogen. Kondisi permanen ini, pada saat pembentukan dipol akan menyebabkan molekul saling tarik menarik satu sama lain lebih dari yang meraka bisa lakukan jika hanya menyandarkan pada gaya dispersi saja.
Hal ini sangat penting untuk merealisasikan bahwa semua molekul mengalami gaya dispersi. Interaksi dipol-dipol bukan suatu alternatif gaya dispersi – penjumlahannya. Molekul yang memiliki dipol permanen akan memiliki titik didih yang lebih tinggi dibandingkan dengan molekul yang hanya memiliki dipol yang berubah-ubah secara sementara.
Agak mengherankan dayatarik dipol-dipol agak sedikit dibandingkan dengan gaya dispersi, dan pengaruhnya hanya dapat dilihat jika kamu membandingkan dua atom dengan jumlah elektron yang sama dan ukuran yang sama pula. Sebagai contoh, titik didih etana, CH3CH3, dan fluorometana, CH3F adalah:

Kenapa dipilih dua molekul tersebut untuk dibandingkan? Keduanya memiliki jumlah elektron yang identik, dan jika kamu membuat model kamu akan menemukan bahwa ukurannya hampir sama – seperti yang kamu lihar pada diagram. Hal ini berarti bahwa gaya dispersi kedua molekul adalah sama.
Titik didih fluorometana yang lebih tinggi berdasarkan pada dipol permanen yang besar yang terjadi pada molekul karena elektronegatifitas fluor yang tinggi. Akan tetapi, walaupun memberikan polaritas permanen yang besar pada molekul, titik didih hanya meningkat kira-kira 10°.
°.

Berikut ini contoh yang lain yang menunjukkan dominannya gaya dispersi. Triklorometan, CHCl3, merupakan molekul dengan gaya dispersi yang tinggi karena elektronegatifitas tiga klor. Hal itu menyebabkan dayatarik dipol-dipol lebih kuat antara satu molekul dengan tetangganya.

Dilain pihak, tetraklorometan, CCl4, adalah non polar. Bagian luar molekul tidak seragam - in pada semua arah. CCl4 hanya bergantung pada gaya dispersi

Karena itu manakah yang memiliki titik didih yang lebih tinggi? CCl4 tentunya, karena CCl4 molekulnya lebih besar dengan lebih banyak elektron. Kenaikan gaya dispersi lebih dari sekedar menggantikan untuk kehilangan interaksi dipol-dipol.

No comments:

Post a Comment

Web hosting

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | cheap international calls